Гомойотермные и пойкилотермные

Пойкилотермные и гомойотермные животные. Механизмы терморегуляции.

Многие виды животных способны или неспособны к собственной терморегуляции, т. е. поддерживать постоянную температуру.

По этому признаку их делят на:

— пойкилотермных (от греч. poikiloi —-различный, переменный и therme — жар) — им присуща непостоянная температура;

Пойкилотермными являются все организмы, кроме млекопитающих и нескольких видов птиц. Температура их тела приближается к температуре среды. Лишь некоторые виды этих животных способны к изменению температуры своего тела, притом в определенных условиях. Например, этой способностью обладают тунцы. Важным для пойкилотермных организмов является то, что повышение температуры их тела происходит, когда увеличивается их активность, их обмен веществ.

— гомойотермных (от греч. homoios — равный и therme — жар) — им присуща постоянная температура .

Гомойотермными являются млекопитающие и некоторые виды птиц. Они способны к терморегуляции, которая обеспечивается физическими и химическими путями. Физическая терморегуляция осуществляется за счет накапливания подкожного жирового слоя, ведущего к сохранению тепла, или за счет учащенного дыхания. Химический путь терморегуляции заключается в потоотделении.

В ходе эволюция гомойотермные животные развили способность защищаться от холода (миграции, спячка, мех и т. д.).

Экологические группы рыб.

Первые рыбообразные животные возникли не позже силура и не имели челюстей (см. бесчелюстные, щитковые и панцирные рыбы). С развитием челюстей из одной из жаберных дуг возникли первые рыбы.

КлассификацияС таксономической точки зрения рыбы — парафилетическая группа, так как в неё должен входить гипотетический предок группы наземных животных — четвероногих (Tetrapoda), которые, очевидно, рыбами не являются. Делятся на два современных класса: хрящевые и костные. Отношения основных подгрупп рыб представлены в виде следующей кладограммы:

· Панцирные рыбы или плакодермы (Placodermi)

· Хрящевые рыбы (Chondrichthyes)

· Костные рыбы (Osteichthyes)

· Лучепёрые рыбы (Actinopterygii)

· Лопастепёрые рыбы (Sarcopterygii)

Некоторые палеонтологи считают, что конодонты (отряд Conodonta) были хордовыми животными, что позволяет считать их самыми примитивными рыбами.Экология рыб

В настоящее время рыбы — господствующая группа животных в водных биоценозах. Наряду с китообразными, они завершают цепи питания

.По местам обитания различают морских, пресноводных и проходных рыб.

При достаточно большом разнообразии видов по образу жизни всех рыб можно включить в состав нескольких экотипов:

литоральные (планктон) — обитают в прибрежной зоне (бычки, морские собачки).

пелагические рыбы (нектон) — держатся в толще воды;

донные (бентос) — например, скаты, камбалы, сомы;

Доказательства эволюции

В основе современной теории эволюции лежит теория Ч. Дарвина. Но эволюционизм существовал и до Ч. Дарвина. Главным трудом Ч. Дарвина является книга «Происхождение видов путем естественного отбора или сохранение благоприятствуемых пород в борьбе за жизнь» (1859), существенным дополнением к которой служат его книги «Изменение домашних животных и культурных растений» (1869) и «Происхождение человека и половой отбор» (1871).

Эволюционное учение Дарвина состоит из трех разделов, а именно: совокупность доводов в пользу того, что историческое развитие организмов действительно имеет место; положение о движущих силах эволюции; представления о путях эволюционных преобразований.

Доводы в пользу того, что эволюция действительно имеет место, Ч. Дарвин черпал из разных наук. Наиболее убедительные доказательства были взяты им из палеонтологии. Например, обнаружение в древнейших слоях ископаемых остатков организмов, сильно отличающихся от современных, и постепенное увеличение сходства ископаемых остатков организмов из позднейших слоев для Ч. Дарвина было летописью эволюции. Далее, Ч. Дарвин использовал данные эмбриологии того времени, которые свидетельствовали о единстве происхождения организмов, а также данные о закономерностях распределения организмов на суше и в воде и явной зависимости организации животных и растений от условий обитания (на материках и островах), которые свидетельствовали в пользу эволюции и разных направлений эволюции на материках и островах. Наконец, он широко использовал достижения сельскохозяйственной практики.

Доказательства эволюции получены в разных науках. Классические доказательства эволюции получены, прежде всего, в палеонтологии в результате изучения ископаемых организмов, живших в прошлые эпохи. Предполагают, что в ходе эволюции вымерло около 200 000 видов животных. В более глубоких слоях Земли обнаруживаются остатки более древних форм жизни, тогда как в поверхностных слоях находят остатки более поздних форм. Можно сказать, что история жизни на Земле написана на языке ископаемых остатков. Палеонтологический материал дает также основания судить о темпах и направлениях эволюции.

Доказательства эволюции получены в биогеографии, которая является наукой о распространении растений и животных. В биогеографии различают шесть биогеографических областей. Каждая из этих областей характеризуется специфическими обитателями (растениями и животными), называемыми эндемиками, под которыми понимают организмы видов, родов и таксонов, ограниченных в своем распространении определенными территориями.

В Палеоарктической области (Европа, африканский север от Сахары, часть Азии к северу от Гималаев, Азорские острова и острова Зеленого мыса) эндемичными, если говорить о животных, являются кроты, олени, быки, овцы, козы, скворцы и сороки.

В Неоарктической области (Гренландия и Северная Америка) эндемичными являются горные козлы, луговые собачки, опоссумы, скунсы, еноты, сойки и американские грифы. Кроме того здесь встречаются формы, андемичные для палеоарктической области.

В Неотропической области (Южная и центральная Америка, юг Мексики и острова Вест-Индии) обитают альпаки, ламы, цепко-хвостые обезьяны, тапиры, ленивцы, вампиры, муравьеды и многие виды птиц, не встречающиеся в других частях земного Шара.

В Эфиопской области (Африка к югу от Сахары, Мадагаскар) обитают шимпанзе, гориллы, зебры, носороги, трубкозубы, бегемоты, жирафы, многие виды птиц, пресмыкающихся и рыб, не обнаруживаемые в других областях.

В Восточной области (Индия, Цейлон, Индокитай, юг Китая, Малайский полуостров и отдельные острова Малайского архипелага) обитают орангутанги, черные пантеры, индийские слоны, гиббоны и долгопяты.

В Австралийской области (Австралия, Новая Зеландия, Новая Гвинея и др. острова Малайского архипелага) эндемичными являются утконосы, кенгуру, вомбаты, коала и другие сумчатые животные. Эндемичными являются бескрылые птицы эму и казуар, а также птица-лира и какаду.

Одно из основных положений биогеографии заключается в том, что каждый вид растений и животных возникал только однажды и только в одном месте (центре происхождения), откуда он расселялся до тех пор, пока не встречал какую-нибудь преграду, например, географическую, климатическую, пищевую и т. д. Географические ареалы близких видов, как правило, не совпадают, но они и не очень отдалены один от другого.

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций.

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого.

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ — конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой.

Экология: биология взаимодействия. 5.19. Термобиологические типы организмов

В тех случаях, когда на какой-то важный для биосистем параметр влияют различные процессы, принято рассматривать регуляцию этого параметра как баланс. Как мы уже указывали, температура является важнейшим условием, в высокой степени влияющим на протекание всех биологических процессов. На температуру тела любого организма влияет целый ряд факторов (рис. 5.19.1).

Рис. 5.19.1. Тепловой баланс организма зависит от многих факторов

Рассматривая приспособления организмов к поддержанию температуры своего тела, мы увидим отражение всех особенностей его жизни. К примеру, организмы, которые поддерживают постоянную температуру тела, превышающую температуру окружающей среды (гомойотермные организмы), имеют разнообразные приспособления для сохранения тепла. У многих млекопитающих это шерсть, у птиц — перья. Характерная форма тела китов и тюленей определяется не только совершенствованием их обтекаемости, но и толстой жировой «рубашкой», окутывающей их тело. Если какие-то части тела гомойотермных организмов интенсивно охлаждаются (как, например, ноги чаек, которыми они могут ходить по льду), в них могут развиваться специальные структуры для экономии тепла. Так, кровеносные сосуды в ногах чайки работают по принципу противотока. Артерии, несущие в ноги теплую кровь, и вены, уносящие холодную кровь, находятся в тесном соседстве. Тепло из артериальной крови передается в венозную. Если бы сосуды не были сближены, между ними не было бы эффективного теплообмена. А если бы токи крови были направлены в одну сторону, температура артериальной и венозной крови попросту бы усреднялась (и соответствовала бы для входящей в стопу артериальной крови примерно 16°С, что привело бы к большой теплоотдаче через ноги). Благодаря противотоку большая часть тепла отдается артериальной кровью перед входом в ноги и возвращается с венозной кровью в туловище.

Чем меньше размер тела животных, тем сложнее поддерживать постоянную температуру тела. Вероятно, минимальный размер гомойотермных животных соответствует размерам тела землероек и колибри. Чем крупнее животное, тем проще ему поддерживать постоянную температуру тела. Для крупных животных основной проблемой становится опасность перегрева (например, после периода повышенной мышечной активности). Не случайно крупные гомойотермные животные, обитающие в теплом климате, обычно не имеют плотного шерстного покрова, а также могут иметь какие-то органы-«радиаторы», служащие для отдачи избыточного тепла. Именно такую роль выполняют уши слонов; в случае перегрева слоны усиливают кровообращение в ушах и помахивают ими.

Эффективным способом снижения температуры тела является испарение воды с его поверхности. Она может испаряться с отдельных участков тела (из ротовой полости, как у собак или крокодилов) или с большей части поверхности тела (как у человека). Способ регуляции теплового баланса человека вообще довольно необычен. Становление нашего вида шло по пути неспецифичных охотников и собирателей африканских саванн. Одним из серьезных преимуществ наших предков была их высокая выносливость. Изнеженным жителям городов трудно в это поверить, но тренированный человек способен бежать дольше и пробежать большее расстояние, чем тренированная лошадь! При таком длительном беге мышцы производят значительное количество тепла. Вероятно, единственный способ охлаждения в таких условиях — интенсивное потоотделение. Человек имеет чрезвычайно высокое количество потовых желез на единицу поверхности тела! Если бы он был покрыт плотной шерстью, как его ближайшие родственники (человекообразные обезьяны), оседающая пыль покрыла бы его тело плотной коркой. Исчезновение шерсти в нашем случае — приспособление к «сбрасыванию» излишнего тепла.

Однако нашим предкам приходилось не только отдавать в среду лишнее тепло, но и экономить его, например, прохладными ночами. С этим связано развитие у человека достаточно мощного слоя подкожного жира, существенно большего, чем у человекообразных обезьян.

Способов регуляции теплового баланса достаточно много, но их можно классифицировать, разделив на несколько групп. «На поверхности» лежит разделение организмов на пойкилотермных и гомойотермных. Эти две группы могут иметь и иные названия.

Пары терминов «холоднокровные–теплокровные» и «экзотермные–эндотермные» следует считать неудачными и воздерживаться от их употребления. Эти термины ссылаются не на те особенности терморегуляции организмов, которые следует считать основными. У «холоднокровных» организмов кровь может быть достаточно теплой, а «эндотермные» могут получать изрядную долю энергии извне. Термины «пойкилотермные» (греч. poikilos — пестрый, разнообразный и therme — тепло, жар) и «гомойотермные» (греч. homoios — одинаковый) лишены этих недостатков и указывают на основную особенность — переменную или постоянную температуру тела. Конечно, полностью отказаться от использования терминов «холоднокровные–теплокровные» не получится, но нужно понимать, что они относятся не столько к температуре тела, сколько к способу ее регуляции.

Читайте также  Орангутан или орангутанг?

Рассматривая названные группы организмов, можно увидеть, что между ними существуют переходы. Рассмотрим более подробную их классификацию (рис. 5.19.2). По типу терморегуляции организмы делятся на:

пойкилотермных (не поддерживающих постоянную температуру тела благодаря работе специальных физиологических систем):

арегуляторных пойкилотермных (способных к регуляции температур только благодаря выбору наиболее благоприятных для них условий);

регуляторных пойкилотермных (способных к регуляции температуры благодаря наличию механизмов разогрева или охлаждения тела);

гигантотермных (имеющих относительно постоянную температуру тела, поддерживаемую благодаря крупным размерам тела);

гомойотермных (поддерживающих как верхнюю, так и нижнюю границу диапазона нормальных температур);

гетеротермных (способных поддерживать постоянную температуру тела, а также существенно снижать ее при необходимости).

5.19.2. Регуляция температуры тела у различных термобиологических типов организмов

К числу гомойотермных животных относится большинство птиц и млекопитающих; кроме них, гомойотермия возникала у летающих ящеров (птерозавров) и мелких хищных динозавров (возможно, связанных тесным родством с птицами). Наоборот, некоторые виды млекопитающих не являются по-настоящему гомойотермными, как, например, голый землекоп (африканский колониальный роющий грызун, имеющий социальную организацию, напоминающую таковую у социальных насекомых).

Гетеротермия может носить сезонный (ежи, суслики, сурки) или даже суточный (летучие мыши и колибри) характер. Чтобы разогреваться, гетеротермные организмы должны иметь альтернативную систему разогрева.

К примеру, если температура тела человека снизится ниже 35°С, скорость его обмена веществ также сильно упадет, при этом температуру он сам уже не сможет поднять до необходимого уровня. В медицинских учреждениях переохладившегося человека разогревают, подводя к его организму тепло снаружи. А у гетеротермных животных для быстрого подъема температуры тела после охлаждения служит специфическая ткань (бурый жир), способная к большому выделению тепла.

Терморегуляция динозавров — один из вопросов, который достаточно интенсивно обсуждается в популярной литературе. Как ни странно, хотя прямое изучение этой проблемы уже невозможно, мы знаем о ней не так уж и мало.

Крупные динозавры были гигантотермными (иное название — инерциально теплокровными) животными. Как показывают расчеты, в субтропическом климате у животного со средним диаметром тела 1 м (а многие динозавры были крупнее) температура тела будет равняться 34°С с колебаниями в течение суток менее, чем на 1°С, причем без каких бы то ни было дополнительных затрат энергии со стороны самого животного. Самые крупные динозавры вовсе не рисковали переохладиться, так как они были по-настоящему велики. Скорее им мог угрожать перегрев. В этом случае наши реконструкции динозавров страдают серьезным недостатком: мы не отражаем на них органы, которые могли бы выполнять функции сброса излишнего тепла (как уши слона или влажный язык собаки).

Гигантотермия могла быть переходом от пойкилотермии к гомойотермии. Ферменты животных-гигантотермов специализировались для работы при постоянно высокой температуре тела. В то же время у таких организмов развиваются физиологические механизмы, позволяющие контролировать верхнюю границу температур, избегая перегрева. Фактически гигантотермы пользуются преимуществами гомойотермии, не затрачивая на это энергии! А что может «принудить» гигантотермов начать поддерживать постоянную температуру тела, идя ради этого на затраты энергии? Уменьшение размеров.

Гомойотермия возникала в истории жизни несколько раз. Согласно одной из точек зрения, в большинстве случаев ее возникновение оказывалось сопряжено с уменьшением размеров организмов. Так, осваивая полет, уменьшали свои размеры предки птиц и летающих ящеров (вы помните, что некрупному животному летать проще). Предки млекопитающих уменьшили свои размеры, проиграв динозаврам в конкуренции в высшем размерном классе (иногда тактический проигрыш ведет к стратегическому выигрышу). А вот крокодилы, например, хоть и уменьшили свои размеры, но сделали это в ходе приспособления к затаиванию на дне водоемов, которое не позволяло тратить энергию на терморегуляцию. В результате этого крокодилы остались пойкилотермными.

А существуют ли современные гигантотермные животные? В определенной степени элементы гигантотермии можно найти в тепловом балансе крупных ящериц, змей, крокодилов и черепах. Особо интересен способ терморегуляции самого крупного вида современных черепах — кожистой черепахи.

«Удивительная особенность этого рода — его способность поддерживать температуру тела по крайней мере на 18°С выше, чем у воды. … Как и у млекопитающих и птиц, она обеспечивается работой мышц и поддерживается за счет наружного теплоизоляционного слоя жира и противоточного теплообмена кровеносных сосудов конечностей» (Роберт Кэрролл, 1992).

Видимо, кожистую черепаху можно считать животным, более всего похожим по типу своей терморегуляции на средних по своему размеру динозавров. Крупным динозаврам не приходилось экономить тепло, а мелкие были гомойотермными!

Гомойотермные и пойкилотермные

Нина Михайловна Чернова, Александра Михайловна Былова

Данному учебнику предшествовало два издания учебного пособия по экологии, написанного авторами для студентов биологических факультетов педвузов и широко апробированного в учебных заведениях страны начиная с 1980 г.

В основу положены курсы лекций, читаемых в разных вариантах в Московском педагогическом государственном университете. Программы, отвечающие проблематике общей экологии, были введены в вузы с конца 60-х годов XX в., и тогда остро ощущался недостаток учебной литературы по этой дисциплине. Прикладные вопросы экологии излагались студентам в курсе «Охрана природы», который был введен значительно раньше и был уже достаточно обеспечен учебниками. Поэтому перед авторами стояло несколько задач: 1) отобрать материалы, необходимые и достаточные для ознакомления студентов с наиболее фундаментальными основами данной научной области; 2) связать их с тем кругом знаний о живой и неживой природе, которые обеспечиваются программами смежных курсов (ботаники, зоологии, физиологии и др., в том числе и курсом «Охрана природы»); 3) сделать изложение достаточно популярным и доступным широкому кругу читателей, имея в виду именно ориентацию на профессию учителя.

Общая концепция предмета и отдельные вопросы широко обсуждались с коллегами – преподавателями многих других педвузов страны на ежегодных четырехмесячных курсах по повышению квалификации в области экологии, введенных при МПГУ (тогда МГПИ) с 1975 г. Авторы надеются, что частично выполнили поставленные задачи, так как два последовательных издания «Экологии» (М.: Просвещение, 1980, 1988), выпущенные достаточно большим тиражом (в сумме около 100 тыс. экземпляров), разошлись по стране и во многих педвузах в течение более двух десятилетий служили одним из основных учебных пособий по данной дисциплине. Книга оказалась полезной также школьным учителям и ряду других специалистов.

За прошедшие десятилетия положение с учебной литературой по экологии сильно изменилось. Появился ряд фундаментальных переводных сводок, а также широкий спектр отечественных изданий, предназначенных для разных категорий учебных заведений. В большинстве из них экология принимается в ее расширительном современном значении – не только как наука об основных законах связей и устойчивости живой природы в окружающей среде, но и как вся сфера экологических проблем человечества во всех без исключения областях жизни, включая социальные. При таком широком подходе и при обилии учебных изданий, большая часть которых имеет компилятивный или специальный характер, вновь возникают затруднения с отбором необходимой и достаточной информации для систематизированной и экологически грамотной подготовки учителя. Изменились и учебные планы педвузов. В соответствии с вновь принятыми государственными стандартами для биологических факультетов они включают теперь, кроме общей экологии, отдельные курсы по социальной экологии и рациональному природопользованию. Таким образом, появилась возможность более глубоко и систематизированно обсуждать и научные, и прикладные вопросы в этой области знаний, включая методические проблемы экологического образования. Этому служат также различные факультативы и спецкурсы, разработанные во многих педвузах. Однако проблема учебника по основополагающему курсу общей экологии по-прежнему остается актуальной, так как он должен соответствовать действующим программам и быть ориентированным на специфику естественнонаучной и профессиональной подготовки учителей биологии. Переводные сводки служат превосходными справочниками, но не подходят для сжатого освоения курса. Среди отечественных изданий наиболее близкими по объему информации являются недавно появившиеся учебники по экологии академика И. А. Шилова (М.: Высшая школа, 1997) и профессора Н. К. Христофоровой (Владивосток: Дальнаука, 1999). Оба эти хорошие пособия ориентированы, однако, на классические университеты, готовящие биологов-исследователей, в связи с чем имеют соответствующую структуру и стиль научных обзоров. Необходимость специального и популярного издания для экологической подготовки учителей-биологов остается.

Подготавливая издание настоящей книги как учебника по общей экологии, авторы не ставили перед собой задачу полной переработки содержания. Фундаментальные положения любой естественной науки не устаревают, однако новые знания меняют аспекты рассмотрения отдельных проблем, расширяют и углубляют систему взглядов. Поэтому в текст внесен ряд дополнений, а некоторые разделы написаны заново. Значительно перестроена структура книги, и почти вдвое увеличен иллюстративный материал. Авторы постарались учесть все отклики и пожелания на предшествующие издания и искренне благодарны всем, кто принял участие в их обсуждении. Надеемся также на ответную реакцию читателей и на настоящий учебник. Выражаем признательность своим коллегам, с которыми обсуждались многие вопросы данного и смежных курсов: профессорам Н. И. Шориной, В. М. Константинову, В. М. Галушину, И. Х. Шаровой, Н. А. Кузнецовой, доцентам И. А. Жигареву, В. Т. Бутьеву, М. Е. Черняховскому.

Авторы надеются, что учебник будет полезен не только студентам биологических факультетов педвузов, но и широкому кругу учителей, а также представителям других специальностей, интересующимся научными основами экологии и занимающимся популяризацией знаний.

Глава 1. КРАТКАЯ ИСТОРИЯ ЭКОЛОГИИ

Экология – это наука о связях, поддерживающих устойчивость жизни в окружающей среде. Жизнь – самое сложное явление в окружающем нас мире. Ее изучает множество наук, складывающихся в совокупности в дифференцированную и многоплановую систему биологии. Однако и достижения многих других, не биологических наук (например, механики, оптики, коллоидной химии, физической географии и т. д.) вносят свой вклад в понимание жизни. Экология в этой многоликой системе знания о природе занимает свое, особое место. В центре ее внимания не только биологические объекты, но и те условия, которые необходимы для их существования. Поэтому экология, имея корни в биологии, вторгается и в другие области знания, пытаясь постичь законы взаимодействия живых и неживых систем. Как отдельная наука экология начала оформляться всего около полутора столетий назад и прошла бурный путь развития, в течение которого способствовала формированию представлений о сложности и вместе с тем упорядоченности организации жизни на Земле.

Представления о том, что живые существа не только реагируют на изменения окружающей среды, но и материально взаимодействуют с ней, сформировались еще в глубокой древности. Естественно, что в разные времена суть этих взглядов была различной. «Текут наши тела, как ручьи, и материя вечно обновляется в них, как вода в потоке», – писал древнегреческий философ Гераклит. «Жизнь – это вихрь, – утверждал известный зоолог начала XIX столетия Ж. Кювье, – направление которого постоянно и который увлекает всегда молекулы того же сорта, но где индивидуальные молекулы входят и постоянно выходят таким образом, что форма живого тела для него более существенна, чем материя».

Читайте также  Чем накормить малоежку

В науке прочно утвердилось представление, что обмен веществ является одной из самых фундаментальных характеристик жизни. С философской точки зрения живые организмы относятся к так называемым открытым системам, которые поддерживают себя за счет потоков вещества и энергии из окружающей среды. На вопрос о значимости обмена веществ для живой природы впервые попытался ответить в середине прошлого столетия известный физик Э. Шредингер. Он показал, что таким образом организмы компенсируют увеличение энтропии (т. е. перехода молекул тела в хаотическое состояние за счет теплового движения), поддерживая упорядоченность своей организации, и тем самым противостоят смерти.

Другие фундаментальные свойства жизни, относящиеся к связям с окружающей средой, – это способность к отражению и адаптациям, т. е. реакции на изменение условий и возможность подстраивания к ним в определенных рамках. В этих реакциях большое значение имеют не только материально-энергетические, но и информационные потоки. Таким образом, связи, поддерживающие жизнь на Земле, не случайно оказались объектом внимания отдельной науки – экологии.

Пойкилотермные и гомойотермные животные

Температура тела живых существ по-разному зависит от температуры окружающей среды. Баланс тепла в организме складывается из его прихода и расхода. Источники поступления тепловой энергии делятся на внешние и внутренние. Внешнее, или экзогенное, тепло организм получает от более нагретых воды, воздуха, окружающих предметов, прямой солнечной радиации. При этом большую роль играют площадь покровов и их теплопроводность. Внутреннее, или эндогенное, тепло вырабатывается как обязательный атрибут обмена веществ. Любой организм выделяет в окружающую среду тепло в результате своей жизнедеятельности. Источником теплообразования в клетках являются два экзотермических процесса: окислительные реакции и расщепление АТФ. Энергия, освобождающаяся при втором процессе, идет, как известно, на осуществление всех рабочих функций клетки, а энергия окисления — на восстановление АТФ. Но и в том, и в другом случае, согласно второму закону термодинамики, часть энергии рассеивается в виде тепла. Тепло, вырабатываемое живыми организмами как побочный продукт биохимических реакций, может служить существенным источником повышения температуры их тела. Общий объем теплопродукции зависит от массы тела и интенсивности метаболизма. Потери тепла происходят через поверхность тела за счет излучения и теплопроводности, а также за счет энергоемкого испарения воды организмами. По физическим законам на испарение 1 мл воды затрачивается около 539 кал. Соотношение всех этих теплообменных процессов определяет температуру живых существ и влияет на скорость метаболических реакций. Жизнедеятельность и активность большинства видов на Земле зависят, прежде всего, от тепла, поступающего извне, а температура тела — от хода внешних температур. Такие организмы называют пойкилотермными. Этот термин обозначает изменчивость теплового режима организмов. Пойкилотермность свойственна всем микроорганизмам, грибам, растениям, беспозвоночным животным и значительной части хордовых. Две группы высших животных — птиц и млекопитающих относят к гомойотермным. Они способны поддерживать постоянную оптимальную температуру тела независимо от температуры среды. Среди пойкилотермных организмов есть такие, которые всю жизнь проводят в условиях постоянных внешних температур (глубины океанов, пещеры и т.п.), в связи, с чем температура их тела не меняется. Такое явление называют ложной гомойотермен. Она свойственна, например, ряду рыб и иглокожих. Среди истинно гомойотермных животных выделяют группу гетеротермных. В нее входят виды, впадающие в спячку или временное оцепенение. Эти виды в активном состоянии поддерживают постоянную температуру тела на высоком уровне, а в неактивном — пониженную, что сопровождается замедлением обмена веществ. Таковы сурки, суслики, летучие мыши, сони, ежи, колибри, стрижи и др. Таким образом, термины «пойкилотермия», «гомойотермия», «ложная гомойотермия» и «гетеротермия» отражают степень изменчивости температуры живых существ. Для характеристики организмов по основным источникам используемого тепла используют термины эктотермный и эндотермный. Эктотермия — это жизнь преимущественно за счет нагревания из внешней среды, эндотермия — за счет тепла, вырабатываемого самим организмом. Масштабы выработки тепла сильно отличаются у разных видов, проявляя зависимость от сложности организации группы, возможностей окислительных реакций, размеров и массы тела, условий среды и других причин. Так, например, бактерии выделяют на грамм веса в час около 450 кал, мухи-дрозофилы — 30, мыши — 8, для человека этот показатель равен 4. В пределах позвоночных животных при сходной массе тела млекопитающие продуцируют в 5-6 раз, а птицы — в 7-8 раз больше тепла, чем рептилии.

Все живые организмы потенциально эндотермны, но сильно различаются по уровню обмена и возможностям сохранения тепла. Нарушения теплового баланса меняют температуру тела. Восстановить нарушенный баланс можно тремя путями: 1) изменением теплопродукции, 2) изменением теплоотдачи и 3) перемещением в пространстве в область предпочитаемых температур. Пойкилотермные и гомойотермные организмы по-разному реализуют возможности температурных адаптаций.

Температурные адаптации пойкилотермных организмов Температура пойкилотермных изменяется вслед за температурой окружающей среды. Они преимущественно эктотермны, выработки и сохранения собственного тепла у них недостаточно для противостояния тепловому режиму местообитаний. В связи с этим реализуется два основных пути адаптации: специализация и толерантность. Специализированные виды стенотермны, они приспособлены к жизни в таких участках биосферы, где колебания температур происходят лишь в узких пределах. Выход за эти пределы для них губителен. Например, некоторые одноклеточные водоросли, развивающиеся в горных ледниках на поверхности тающего льда, погибают при температурах, превышающих +(3-5) °С. Растения дождевых тропических лесов не способны переносить снижение температуры до +(5-8) °С. Коралловые полипы живут только в диапазоне температур воды от +20,5 до +30 °C, т. е. в тропическом поясе океана. Голотурия Elpidia glacialis обитает при температуре воды от 0 до +1 °C и не выдерживает отклонения от этого режима ни на один градус.

Теплокровность: предпосылки и следствия

Возникновение теплокровности — одно из значительных и загадочных событий в эволюции позвоночных животных. Теплокровные животные, обладая более высоким уровнем аэробного метаболизма по сравнению с холоднокровными, в меньшей степени зависят от температуры окружающей среды. Однако, теплокровность — это дорогая адаптация, т.к. она требует значительных затрат энергии. Какие условия необходимы были для того, чтобы такая дорогостоящая адаптация, как теплокровность, стала выгодной и, следовательно, начала поддерживаться естественным отбором?

Гомойотермия («теплокровность») — это способность животного неопределенно долгое время сохранять заданную (в частном случае, — постоянную) температуру в «ядре» своего тела независимо от колебаний температуры среды в достаточно широком диапазоне.

Гомойотермия поддерживается эндотермически, т.е. за счет метаболического тепла, образуемого как побочный результат необходимых физиологических процессов и активности, или как результат специальной терморегуляционной теплопродукции. У пойкилотермных животных, в отличие от гомойотермных, температура тела пассивно следует за изменением температуры среды, но может быть ей не равна как благодаря использованию солнечных лучей или нагретых предметов («эктотермия»), так и применению испарительного охлаждения.

Гомойотермия — ярко выраженный ароморфоз — прогрессивное эволюционное изменение строения, приводящее к общему повышению уровня организации организмов (Северцов,1925).

Происхождение и пути возникновения гомойотермии — в течение многих десятилетий широко обсуждаемая проблема (Северцов,1925; Будыко, 1982; Дольник, 2003, Гаврилов, 2006, 2012; Bennett, Ruben, 1979; Barrick, Showers, 1994; Fricke, Rogers, 2000; Seebacher, 2003; Amiot et al., 2006; Eagle et al., 2010, 2011 и др.). За время дискуссии были неоднократно предложены почти все мыслимые гипотезы происхождения гомойотермии. Однако всегда было ясно, что в основе своей это проблема биоэнергетическая. В данном сообщении я предлагаю рассмотреть еще несколько гипотез с точки зрения экологической энергетики современных животных.

Высокая и относительно постоянная температура внутренней среды дает то преимущество, что скорости химических реакций в организме высоки и могут не зависеть от внешней температуры. Млекопитающие и птицы имеют много более высокий уровень аэробного метаболизма, который может обеспечивать такие поведенческие проявления, которые невозможны дня низших позвоночных. Кроме этого их гомойотермное состояние, высокая и стабильная температура тела дает им возможность избегать замедляющего влияния низких температур на метаболическое обеспечение поведения и уровень метаболизма. Поэтому реактивность гомойотермных животных, их локомоторная активность, возможность выполнить определенные действия (полететь, прыгнуть, пробежать) и скорость усвоения пищи, во-первых, выше, чем у пойкилотермных, а, во-вторых, постоянна и пассивно не зависит от внешних условий.

Гомойотермия — очень дорогая адаптация, т.к. для ее обеспечения необходимо потреблять и расходовать энергию.

При активности образуется много тепла и очень быстро возрастает температура тела, что губительно, так как при высокой температуре денатурируются белки.

Из-за большого времени разогрева у крупных животных факультативная эндотермия, т.е та, которой предположительно обладали динозавры, была невыгодна, а теплопроводность покровов рептилий так велика, что не может обеспечить сохранение эндогенного тепла в покое при любой температуре тела.

Следовательно, надо иметь совершенные системы отдачи тепла, чтобы обеспечивать равновесие между теплопродукцией и теплоотдачей.

Основная термодинамическая проблема при активности у пойкилотермных животных — это рассеивание тепла, вырабатываемого при активности и вообще при работе. Для этого необходимы эффективные механизмы отдачи тепла — развитая кровеносная система и способность управлять теплоизоляцией покровов.

Отсюда — следующая предпосылка формирования гомойотермии. Чтобы увеличить продолжительность активности, нужно создавать механизмы отдачи избыточного тепла.

Интенсивности метаболизма и, соответственно, скорости поглощения кислорода у птиц и млекопитающих и в состоянии покоя, и в состоянии активности в 10–12 раз выше таковых у пойкилотермных животных соответствующей массы, но, по-видимому, достигаются у птиц и млекопитающих разными способами. Млекопитающие, развивавшие аэробный метаболизм, произошли в триасе, когда содержание кислорода в атмосфере было приблизительно на 50% ниже современного уровня и даже уровня в юре (Яншин, 1997; Иванов, 2000). Резкое понижение общей массы и процентного содержания кислорода в триасе было связано с широким распространением в это время аридных условий на материках (Яншин, 1997). В этих условиях они избавились от ядер в эритроцитах (получив безъядерные и двояковогнутые, у которых площадь поверхности заключенного и количество заключённого в них гемоглобина больше), что позволяет иметь более тонкие капилляры, а двояковогнутость обеспечивает большую поверхность обмена. Птицы, которые произошли от более совершенных рептилий, устроили себе мощную респираторную и кровеносную системы, и, так как они произошли в то время, когда содержание кислорода в атмосфере Земли приближалось к современному уровню, им не понадобилось избавляться от ядер в эритроцитах.

Возникновение гомойотермных животных, у которых, в первую очередь, интенсифицируется аэробный метаболизм для увеличения активности, происходит в раннем и среднем мезозое, но вплоть до середины мела не происходит их истинного расцвета. Начало расцвета птиц и млекопитающих коррелирует с появлением покрытосеменных растений и связанной с ними фауны беспозвоночных. Связано ли это с каналом энергии для удовлетворения высоких потребностей в пище гомойотермных животных? Почему судьбы млекопитающих и динозавров, которые произошли в триасе, столь различны? Гомойотермия, являясь ярко выраженным ароморфозом, более 100 млн лет «тлела» в недрах биосферы, дожидаясь своего часа.

Читайте также  Шиповник на участке

Динозавры уже в юре достигли огромного разнообразия, сохраняясь до середины и конца мела. А расцвет млекопитающих — это только самый конец мела и кайнозой. Произошло ли это из-за отсутствия достаточной кормовой базы для млекопитающих — что сомнительно, ведь огромное разнообразие тех же динозавров представляло для хищных млекопитающих неисчерпаемую кормовую базу, да и фауна беспозвоночных была достаточно разнообразна в это время. Могли ли биосферные условия вплоть до середины мела не позволять в полной мере использовать преимущества гомойотермии? Почему только с появлением покрытосеменных растений и связанной с ними фауны беспозвоночных наступает заметный расцвет фауны млекопитающих?

Трудно допустить, что гомойотермные млекопитающие, обладающие на порядок большей мощностью и возникшие в одно время с динозаврами, не смогли завоевать достойное место в биоценозах. Возможны следующие варианты объяснения этого парадокса.

Динозавры обладали истинной гомойотермией (эндотермией). Это значит, что наряду с высокой температурой тела обладали и высоким аэробным метаболизмом. Никаких достоверных доказательств этому нет. Но если все-таки это допустить, тогда они действительно составляли конкуренцию, в первую очередь, млекопитающим. Первые ночные и мелкие млекопитающие легко могли быть вытеснены гомойотермными динозаврами из магистральных ниш. Поэтому попытки «измерить» температуру тела динозавров или найти доказательства их высокого метаболизма следует продолжать. Но вероятность, что у динозавров был высокий аэробный метаболизм, с моей точки зрения, ничтожна.

Второй вариант — гомойотермность первых млекопитающих и выгоды высокой активности и выносливости долгое время не позволяли в полной мере использовать эти преимущества из-за связанного с ними высокого потребления энергии и невозможности канализировать необходимые источники пищи. В условиях, существовавших в триасе и юре с преобладанием мезофитной растительности и малой продуктивностью сообществ, гомойотермия птиц и млекопитающих не могла предоставить им экологические ниши с нужным потоком энергии, не говоря уже о возможности увеличить разнообразие. Естественный отбор позволил животным с высоким энергетическим метаболизмом увеличить разнообразие и численность только тогда, когда эти (гомойотермные) животные могли удовлетворять свои возросшие во много раз потребности в пищевых ресурсах. Произошло это в середине мела, с появлением покрытосеменных растений и увеличением фауны беспозвоночных, связанных с ними. Именно в середине мелового периода наступает глобальный кризис наземных биоценозов (Расницын, 1988). Как пишет В. В. Жерихин (1980), «…позднемеловые насекомые отличаются от раннемеловых очень резко, причем уже сеноманские фауны вполне типичны для позднего мела и сохраняют лишь отдельные архаичные черты. По-видимому, эта смена, самая быстрая и резкая в истории насекомых вообще, связана с экспансией покрытосеменных в конце раннего мела». Приблизительно с этого времени началась экологическая экспансия птиц и млекопитающих, выражавшаяся в их адаптивной радиации. Распространение покрытосеменных растений и насекомых как пищевых ресурсов, способных удовлетворить гомойотермных, но не большинство рептилий, приспособленных к питанию предшествующей мезофитной флорой и фауной, способствовало экологической экспансии гомойотермных. Птицы и млекопитающие вытеснили рептилий из магистральных ниш, освоили различные местообитания и быстро вышли в крупные размерные классы (млекопитающие — 8 размерных порядков, птицы — 6). Этому способствовало и постепенное понижение температуры на Земле в это время.

Следующий вариант — триасовые и юрские млекопитающие и птицы, ископаемые останки которых представлены фрагментами, еще не были животными с развитой гомойотермией. Возможно, что диагностические морфологические признаки, по которым они были отнесены к млекопитающим недостаточны, чтобы свидетельствовать об истинной гомойотермии. Они были «пробными попытками» биосферы создать животных с развитой аэробной мощностью и с постоянным (базальным) уровнем метаболизма, обеспечивающим мгновенный переход к активности. Я считаю, что только в мелу и произошли животные с истинной гомойотермией — эндотермией (три подкласса млекопитающих и настоящие птицы).

Еще один вариант — это комбинация двух последних. Они, в принципе, не противоречат друг другу. Первые птицы и млекопитающие, по-видимому, действительно не обладали совершенной эндотермией. Но они сразу стали совершенствовать аэробное окисление и, следовательно, нуждались в большем количестве пищи, и с появление покрытосеменных растений — ее стало достаточно.

Морфофизиологическую основу гомойотермии обеспечило эволюционное развитие систем, связанных с циркуляцией крови, дыханием, и с развитием термоизоляции покровов тела. Все эти системы позволили менять теплоотдачу без интенсификации испарения и развить гомойотермию с обязательным образованием базальной метаболической мощности. Базальная метаболическая мощность обеспечивает поддержание гомойотермии, но ее происхождение связано не с терморегуляционными проблемами, а с необходимостью поддерживать высокий уровень активности. Терморегуляция, как, собственно, и сама гомойотермия, — побочные продукты увеличения аэробной мощности в процессе формирования гомойотермных животных.

В отличие от собственно гомойотермии, которая не может развиваться постепенно, усиление аэробного метаболизма для активности могло развиваться постепенно, т.к. оно дает преимущество на всех этапах его увеличения.

Лишь после увеличения аэробного метаболизма и длительности высокой активности предки птиц и млекопитающих столкнулись с разогревом при активности, и выработали приспособления для его регуляции. Из-за сравнительно крупных размеров факультативная эндотермия была для них невозможна. При таких условиях выгодно замедлять теплоотдачу и остывание тела при недолгих паузах в активности, чему могли способствовать покровы с низкой теплопроводностью. Эти покровы могли возникнуть (по крайней мере, у птиц) сначала для иных целей. Но решающим шагом к гомойотермности было создание базальной теплопродукции до уровня, который обеспечивал сохранение высокой температуры тела в покое. Настоящая же гомойотермность возникла лишь после появления особого механизма увеличения теплопродукции без локомоторной активности в ответ на понижение температуру среды — адаптация, которая у рептилий вообще отсутствует.

Хотелось бы подчеркнуть, что до настоящего времени из рептилий дожили в основном затаивающиеся хищники и лишь небольшое количество растительноядных форм (в основном в мелком размерном классе), почти все они приурочены к «теплым» местообитаниям. В то же время, гомойотермные животные, расходующие на свое существование на порядок больше энергии и потребляющие соответственное количество пищи, завоевали практически всю пригодную для жизни часть биосферы, канализировали новые потоки энергии и вытеснили рептилий из магистральных ниш. Освоение умеренных и высоких широт в кайнозое осуществили птицы и млекопитающие.

Экологическая экспансия птиц и млекопитающих привела их к всесветному распространению от Антарктиды (пингвины) до Арктики (белые медведи), не говоря о водных млекопитающих.

Разнообразные адаптации млекопитающих и птиц способствовали освоению не только суши, но также пресных и морских водоемов, грунта, воздуха. Они обеспечили необычайно широкое по сравнению с другими позвоночными использование пищевых ресурсов — спектр питания млекопитающих и птиц разнообразнее состава кормов других наземных и водных позвоночных, что увеличивает значение млекопитающих в биосфере и их роль в различных биоценозах.

2. Понятие о гомойотермных и пойкилотермных организмах. Значение и механизмы поддержания постоянства температуры тела. Понятие о температурном ядре и оболочке тела.

Живые организмы подразделяют на гомойотермные (теплокровные) и пойкилотермные (холоднокровные), в зависимости от скорости обменных процессов, способности поддерживать постоянную температуру тела и уровень активности в широком диапазоне изменений температуры окружающей среды.

Гомойотермные (человек и млекопитающие) организмы характеризуются установленной на определенном уровне температурой тела и способностью сохранять постоянство температуры тела в пределах ± 2 °С, несмотря на изменения температуры внешней среды.

Пойкилотермные (холоднокровные) организмы не способны поддерживать на постоянном, фиксированном уровне температуру тела при изменении температуры окружающей среды. Для них характерен более низкий по сравнению с теплокровными организмами уровень энергетического обмена. Интенсивность энергетических превращений и уровень активности холоднокровных организмов зависит от величины температуры среды их существования.

Температура тела человека и высших животных поддерживается на относительно постоянном уровне, несмотря на колебания температуры внешней среды. Это постоянство температуры тела носит название изотермии.

Постоянство температуры тела у человека может сохраняться лишь при условии равенства теплообразования и теплопотери всего организма. Это достигается посредством физиологических, механизмов терморегуляции, которую принято разделять на химическую и физическую.

ТЕРМОРЕГУЛЯЦИЯ, физиологический процесс, обеспечивающий поддержание постоянной температуры в организме теплокровных животных и человека.

Химическая терморегуляция – процесс образования тепла в организме. Тепловой обмен в организме тесно связан с энергетическим. При окислении органических веществ выделяется энергия. Часть энергии идёт на синтез АТФ. Эта потенциальная энергия может быть использована организмом в дальнейшей его деятельности. Источником тепла в организме являются все ткани. Повышение температуры окр. среды вызывает рефлекторное снижение обмена веществ, вследствие этого в организме уменьшается теплообразование. При понижении температуры окружающей среды рефлекторно увеличивается интенсивность метаболических процессов и усиливается теплообразование.

Физическая терморегуляция – процесс, обеспечивающий удаление тепла из организма. Осуществляется за счет отдачи тепла путем конвекции (теплопроведения), радиации и испарения воды.

Конвекция – непосредственная отдача тепла прилегающим к коже предметам или частицам среды. Идет тем интенсивнее, чем больше разница температур.

Радиация – выделение тепла из организма путем инфракрасного излучения с поверхности тела. За счет этого человек теряет основную массу тепла.

Испарение воды с поверхности тела (2/3 влаги), а также в процессе дыхания (1/3 влаги). Происходит при выделении пота. За сутки с потом выделяется 0,5 л. воды, а с ним и 500 ккал тепла.

В теле гомойотермного животного выделяют две части: ядро и оболочку. В «ядре» происходит образование тепла, «оболочка» рассеивает его в окружающую среду. К «ядру» тела во всех случаях относят внутренние органы (много тепла образуется в печени, кишке, головном мозге) и иногда — скелетные мышцы. «Оболочку» составляют: кожа и подкожная жировая клетчатка (всегда) и иногда — скелетные мышцы.

3. Задача. Проницаемость клеточных мембран для ионов калия при действии ацетилхолина увеличилась. Какие физиологические свойства сердечной мышцы изменяются и почему? Избыток ионов калия во внеклеточной жидкости приводит к слабости сердечной мышцы, уменьшению частоты сердечных сокращений и может вызвать также блокаду проведения импульсов от предсердий к желудочкам. Механизм этих влияний следующий: увеличение содержания ионов калия во внеклеточной жидкости вызывает уменьшение как потенциала покоя, так и потенциала действия. При этом сила сокращения миокарда прогрессивно снижается. Увеличение концентрации ионов калия в крови до 8-12 ммоль/л (что в 2-3 раза выше нормы) является смертельно опасным.

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: