Электричество в жизни растений

Воздействие электрического тока на растительные клетки

Мубинова, Э. С. Воздействие электрического тока на растительные клетки / Э. С. Мубинова, И. В. Котова. — Текст : непосредственный // Юный ученый. — 2020. — № 2 (32). — С. 57-59. — URL: https://moluch.ru/young/archive/32/1870/ (дата обращения: 26.10.2021).

Печально осознавать, что человечество, развиваясь технологически, лишает себя: чистого воздуха, экологически чистых фруктов и овощей. Прогресс погубил естественную для человека среду обитания. И в настоящее время требуется восстановление лесов, лугов, чтобы восстановить естественную среду обитания и устранить конфликт между человеком и природой.

Но в то же время человек нашел дополнительный источник света и тепла — электричество. Электричество — это полезная энергия, получаемая от потока заряженных частиц, это освещение, которое получают при применении электрической энергии.

В массе опытов, проведенных учеными, воздействуя электрической энергией на растения, было выявлено, что при положительном заряде атмосферы растения усиливают поглощение азота и фосфора, а при отрицательном — калия, кальция и магния. Также было выявлено резкое снижение (до 50 %) урожая растений, когда их изолировали от влияния электрического поля атмосферы металлическими сетками.

Известно, что в листьях растений под действием световых лучей протекает так называемый фотосинтез — преобразование световой энергии в биологическую. Джозеф Пристли в 1771 году открыл фотосинтез. Фотосинтетическую структуру растений можно рассматривать как особую, фотоэлектрохимическую батарею, заряжаемую солнцем до разности потенциалов в 1,2 вольт.

Но непосредственное влияние электрического тока на ткани растений приводит к их сгоранию, поэтому электрический ток нужно проводить через почву, насыщенную различного рода минералами и ионами активных металлов.

Электрические процессы в растениях

Фотоэлектричество и фотосинтез

Солнечный элемент, как и клетки листа при фотосинтезе, поглощает фотон света и преобразует его энергию в электрическую. Однако солнечный элемент в отличие от листа растения выполняет функцию преобразования намного лучше. Так, обычный солнечный элемент преобразует в электрическую энергию, по крайней мере, 10 % падающего на него света. Но при фотосинтезе в энергию преобразуется едва ли не 0,1 % падающего света. При подключении одного солнечного элемента к корневой системе растения имеет место стимуляция ее роста. Солнечный элемент преобразует свет в энергию значительно эффективнее, чем лист при фотосинтезе.

Учёные доказали, что из-за изменения разности потенциалов клеточной мембраны может изменяться транспорт ионов.

Элементы, которые требуются растениям только в очень небольших количествах, известны как микро- или микроэлементы. Несмотря на то, что они присутствуют в растениях со скоростью всего лишь

раз количество таких макроэлементов, как азот и калий, они, тем не менее в равной степени необходимы для нормального роста растений. Дефицит микроэлемента, такого как молибден, может быть столь же важным, как и дефицит макроэлемента. Элементами, которые обычно считаются необходимыми микроэлементами, являются бор, хлор, медь, железо, марганец, молибден и цинк.

С помощью электрического тока можно увеличить разность потенциалов клеточной мембраны, а также увеличить проводимость через межклеточные контакты, тем самым ускорить транспорт ионов. Под воздействием электрического тока, ускорится симпластный транспорт ассимилянтов (— передвижение веществ из одной клетки в другую внутри цитоплазмы по плазмодесмам без выхода на поверхность клеток и, следовательно, без формирования наружной мембраны) через межклеточные контакты, а также ионный транспорт через клеточную мембрану благодаря открытию дополнительных ионных каналов. Вследствие чего ускорится обмен веществ в растениях, начнется быстрое поступление ионов: натрия, кальция, калия, хлора (Na + , Ca +2 , K + , Cl − ) и других заряженных молекул. Благодаря быстрому обмену веществ, растение будет расти быстрее и качество и рост урожая увеличится.

Натрий вызывает гидратацию протоплазмы и участвует вместе с другими солями в создании осмотического потенциала клетки. Галофиты, накапливающие большие коли­чества натрия в клеточном соке, имеют высокий осмотический потенциал и могут поглощать воду из засоленных почв.

Кальций влияет на плазменные коллоиды, дегидратируя их и увеличивая вязкость протоплазмы. Способность кальция влиять на физико-химиче­ские свойства протоплазмы, ее вязкость и проницаемость — одно из важнейших его свойств.

Кальций благоприятно влияет на структуру почвы, улучшая ее воздушный и водный режимы. Ионы кальция влияют на поступление в растения микроэлементов: бора, марганца и молибдена. Кальций нейтрализует вредное действие водорода на кислых почвах, устраняя токсическое действие аммонийных солей.

Калий оказывает большое влияние на структурное состоя­ние протоплазмы, повышает ее дисперсность и увеличивает гидратацию коллоидов. Большее количество калия содержится в растении в ионной форме, поэтому его почти полностью можно извлечь водой из тканей растения.Калий принимает участие в процессе фотосинтеза и в превращении углеводов, активируя ферменты, участвующие в превращении углеводов, и способ­ствует их оттоку из листа. Он ускоряет также работу протеолитических ферментов, т. е. катализирует синтез и распад белко­вых веществ.

Находясь в клеточном соке, калий влияет на величину осмотического потенциала клетки. При недостатке его понижается устойчивость растения в засухе

Хлор . Согласно исследованиям, ничтожные количества хлора необходимы всем растениям. Хлор входит в состав фермента карбоксилазы. Ион хлора влияет на поступление других анионов, в частности иона РО4. Соли, содержащие хлор, являются физиологически кислы­ми и поэтому могут способствовать мобилизации фосфорной кислоты из фосфоритов, а также участвовать в создании осмо­тического потенциала клеточного сока

Под воздействием электрического тока увеличится разность потенциалов клеточной мембраны, то есть заряд внешней стороны мембраны станет более электроотрицателен по отношению к внутренней стороне. Из-за этого за счёт диффузии по электрическому градиенту зарядов, по ионным каналам в клетку будет проходить больше ионов.

Ход эксперимента со стимулятором роста

Семена фасоли поместили в две банки и залили небольшим количеством воды. Первую банку оставили без изменений, а вторую опустили два гвоздя (они будут играть роль электродов) и подсоединили их к источнику тока

Через 2 дня после начала эксперимента семена в первой и второй банке увеличились в размере (на 1–2 мм), кожица на них сморщилась. Через 4 дня с начала эксперимента во второй банке начали появляться ростки. Еще через 2 дня ростки семян первой банки начали появляться ростки, когда во второй банке ростки увеличились, начали зеленеть и появляться корешки.

Вывод

В ходе исследования было выяснено, что под действием электрического тока внутри клетки происходит обмен веществ посредством перехода ионов через мембрану клетки без затрат энергии.

Воздействие электрического тока на семена растения положительно влияет на время их прорастания.

Можно добиться улучшения экономического состояния хозяйства путем внедрения современных технологий возделывания яровой пшеницы, в том числе предпосевной обработки семян физическими воздействиями.

При использовании на больших территориях (полях), для экономии электроэнергии можно использовать альтернативные источники энергии (солнечные батареи и ветрогенераторы).

«Роль постоянного тока в жизни растений»

Электрические явления играют важную роль в жизни растений. В ответ на внешние раздражения в них возникают очень слабые токи (биотоки). В связи с этим можно предположить, что внешнее электрическое поле может оказать заметное воздействие на темпы роста растительных организмов. Еще в XIX веке ученые установили, что земной шар заряжен отрицательно по отношению к атмосфере. В начале XX столетия на расстоянии 100 Километров от поверхности земли была обнаружена положительно заряженная прослойка — ионосфера. В 1971 году космонавты увидели ее: она имеет вид светящейся прозрачной сферы. Таким образом, земная поверхность и ионосфера представляют собой два гигантских электрода, создающих электрическое поле, в котором постоянно находятся живые организмы. Заряды между Землей и ионосферой переносятся аэроионами. Носители отрицательных зарядов устремляются к ионосфере, а положительные аэроионы движутся к земной поверхности, где вступают в контакт с растениями. Чем выше отрицательный заряд растения, тем больше оно поглощает положительных ионов Можно предположить, что растения определенным образом реагируют на изменение электрического потенциала окружающей среды.

Цель проекта — проверить на эксперименте влияние электрического тока на рост растения.

Гипотеза: предполагаем, что электричество способствует росту растений.

Задачи:

1. Экспериментальным путем выяснить, как электричество влияет на рост растений

2. Рассмотреть электрические процессы в растениях.

Объект исследования: огурец сорт «Конкурент»

Предмет исследования: влияние постоянного тока на развитие корневой системы огурца

1. Литературный обзор. Анализ изученной литературы по теме «Электричество в жизни растений»

1.1 Историческая справка

Более двухсот лет назад французский аббат П. Берталон заметил, что возле громоотвода растительность пышнее и сочнее, чем на некотором расстоянии от него. Позднее его соотечественник ученый Грандо выращивал два совершенно одинаковых растения, но одно находилось в естественных условиях, а другое было накрыто проволочной сеткой, ограждавшей его от внешнего электрического поля. Второе растение развивалось медленно и выглядело хуже находящегося в естественном электрическом поле. Грандо сделал заключение, что для нормального роста и развития растениям необходим постоянный контакт с внешним электрическим полем. Однако до сих пор в действии электрического поля на растения много неясного. Давно замечено, что частые грозы благоприятствуют росту растений. Правда, это утверждение нуждается в тщательной детализации. Ведь грозовое лето отличается не только частотой молний, но и температурой, количеством осадков. А это факторы, оказывающие на растения весьма сильное воздействие [1]. Противоречивы данные, касающиеся темпов роста растений вблизи высоковольтных линий. Одни наблюдатели отмечают усиление роста под ними, другие — угнетение. Некоторые японские исследователи считают, что высоковольтные линии негативно влияют на экологическое равновесие. Более достоверным представляется тот факт, что у растений, произрастающих под высоковольтными линиями обнаруживаются различные аномалии роста. Так, под линией электропередач напряжением 500 киловольт у цветков гравилата увеличивается количество лепестков до 7—25 вместо привычных пяти [2]. У девясила — растения из семейства сложноцветных — происходит срастание корзинок в крупное уродливое образование. Не счесть опытов по влиянию электрического тока на растения. Еще И В. Мичурин проводил эксперименты, в которых гибридные сеянцы выращивались в больших ящиках с почвой, через которую пропускался постоянный электрический ток. Было установлено, что рост сеянцев при этом усиливается. В опытах, проведенных другими исследователями, были получены пестрые результаты. В некоторых случаях растения гибли, в других — давали небывалый урожай. Так, в одном из экспериментов вокруг делянки, где росла морковь, в почву вставили металлические электроды, через которые время от времени пропускали электрический ток. Урожай превзошел все ожидания — масса отдельных корней достигла пяти килограммов! Однако последующие опыты, к сожалению, дали иные результаты. По-видимому, исследователи упустили из виду какое-то условие, которое позволило в первом эксперименте с помощью электрического тока получить небывалый урожай.

Читайте также  Цветок с 8 лепестками

1.2 Благоприятное действие электрического тока

Как видим, стимуляция роста под воздействием электрического тока наблюдается в том случае, если к растению присоединяется отрицательный электрод. Это можно объяснить тем, что само растение обычно заряжено отрицательно [3]. Подключение отрицательного электрода увеличивает разность потенциала между ним и атмосферой, а это, как уже отмечалось, положительно сказывается на фотосинтезе. Благоприятное действие электрического тока на физиологическое состояние растений можно использовать для лечения поврежденной коры деревьев, некоторых болезней растений. Электрическое поле влияет не только на взрослые растения, но и на семена. Дальнейшее изучение влияния электрического тока на растения позволит еще более активно управлять их продуктивностью. Приведенные факты свидетельствуют о том, что в мире растений еще много непознанного [4].

1.3 Рост растения

Фотосинтез представляет собой процесс, благодаря которому солнечный свет позволяет осуществить питание растений. Лист каждого зеленого растения состоит из тысяч отдельных клеток. Они содержат вещество, называемое хлорофиллом, которое между прочим и придает зеленую окраску листьям. Каждая такая клеточка является химическим заводом в миниатюре [5]. Когда частица света, называемая фотоном, попадает в клетку, она поглощается хлорофиллом. Высвобождаемая при этом энергия фотона активизирует хлорофилл и дает начало ряду превращений, приводящих в конечном итоге к образованию сахара и крахмала, которые усваиваются растениями и стимулируют рост. Эти вещества хранятся в клетке, пока не понадобятся растению. С уверенностью можно предположить, что количество питательных веществ, которыми лист может обеспечить растение, прямо пропорционально количеству солнечного света, падающего на его поверхность. Это явление похоже на преобразование энергии солнечным элементом.

2 Экспериментальная часть

2.1 Создание конструкции стимулятора роста

Для проверки теории потребуется гальванический элемент. Еще потребуется пара электродов, которые можно легко воткнуть в землю вблизи корней. Размер солнечного элемента в принципе не имеет значения, поскольку сила тока, требуемая для стимуляции корневой системы, ничтожно мала. Однако для достижения наилучших результатов поверхность солнечного элемента должна быть достаточно большой, чтобы улавливать больше света. С учетом этих условий для стимулятора корневой системы был выбран гальванический элемент «SmartBuy» с напряжением 4,5 В. К клеммам элемента были подсоединены два стержня из нержавеющей стали. Убедившись в надежности электрического контакта пластинки с тыльной стороны элемента, можно подсоединить один стержень к пластине, другой — к токосъемной решетке.

Рисунок 1 – Конструкция стимулятора роста

2.2 Ход эксперимента со стимулятором роста

Теперь, когда стимулятор готов, необходимо воткнуть два металлических стержня в землю вблизи корней. Все остальное сделает гальванический элемент.

Для эксперимента мы выбрали растение — огурец. Опытные образцы были посажены в горшок, после появления всходов в горшок были помещены электроды. Оставшиеся растения оставлены для контроля. Теперь необходимо одинаково ухаживать за растениями, одновременно поливая их и уделяя им равное внимание.

Через шесть дней нами были получены следующие результаты: растения со стимулятором корневой системы будут явно выше контрольных растений. Этот эксперимент лучше всего проводить в помещении, используя лишь искусственное освещение.

Загадки простой воды

Жизнь растений связана с влагой. Поэтому электрические процессы в них наиболее полно проявляются при нормальном режиме увлажнения и затухают при увядании. Это связано с обменом зарядами между жидкостью и стенками капиллярных сосудов при протекании питательных растворов по капиллярам растений, а также с процессами обмена ионами между клетками и окружающей средой. Важнейшие для жизнедеятельности электрические поля возбуждаются в клетках. В состоянии равновесия мембраны растительных клеток непроницаемы для ионов кальция и проницаемы для ионов калия.

Выход ионов через клеточную мембрану сообщает клетке отрицательный заряд; По достижении равновесия в распределении ионов калия мембранный потенциал приобретает предельное значение потенциала покоя. При раздражении растения изменяется проницаемость клеточных мембран для ионов кальция. Ионы кальция поступают в клетку и уменьшают ее отрицательный заряд. За счет нарушения равновесия в распределении зарядов возникает пик мембранного потенциала, который в виде электрического импульса распространяется вдоль поверхности клеток. Последующий выход из клеток ионов калия возвращает мембранный потенциал к равновесию. Скорость распространения импульсов раздражения по клеткам растений составляет несколько сантиметров в секунду (по нервам животных раздражение распространяется в сотни раз быстрее). Малая скорость распространения раздражений по организму растений связана с их общей неподвижностью.

Особенно активно электрические процессы протекают в клетках корней, поскольку именно через эти клетки поступают питательные соки к растущим побегам. Конечные разветвления корней и верхушек побегов растений всегда заряжены отрицательно относительно стебля. У некоторых растений вблизи корчей в течение нескольких часов происходят колебания электрического потенциала с периодом около 5 минут и амплитудой в несколько милливольт. Наиболее значительные колебания отмечаются у самого кончика корня. Об интенсивности электрических процессов в корневых клетках можно судить по величине протекающего через них тока. Исследованиями установлено, что через каждый 1мм 2 поверхности корня протекает ток около 0,01 микроампера.

Поврежденное место в тканях растений всегда заряжается отрицательно относительно неповрежденных участков, а отмирающие участки растений приобретают отрицательный заряд по отношению к участкам, растущим в нормальных условиях.

Одностороннее освещение листа возбуждает электрическую разность потенциалов между освещенными и неосвещенными его участками и черешком, стеблем или корнем. Эта разность потенциалов выражает реакцию растения на изменения в его организме, связанные с началом или прекращением процесса фотосинтеза.

В практике распыления ядохимикатов в сельском хозяйстве выяснено, что на свеклу и яблоню в большей мере осаждаются химикаты с положительным зарядом, на сирень – с отрицательным. Несомая ветром цветочная пыльца имеет отрицательный заряд, приближающийся по величине к заряду пылинок при пылевых бурях, Вблизи теряющих пыльцу растений резко изменяется соотношение между положительными и отрицательными легкими ионами, что благоприятно сказывается на дальнейшем развитии растений.

Заряженные семена культурных растений имеют сравнительно высокую электропроводность и поэтому быстро теряют заряд. Семена сорняков ближе по своим свойствам к диэлектрикам и могут сохранять заряд более длительное время. Это используется для отделения на конвейере семян культурных растений от сорняков.

Прорастание семян в сильном электрическом поле (например, вблизи коронирующего электрода) приводит к изменениям высоты и толщины стебля и густоты кроны развивающихся растений. Происходит это в основном благодаря перераспределению в организме растения под влиянием внешнего электрического поля объемного заряда. Если в результате исследований удастся найти сумму наиболее благоприятных для развития растений характеристик действующего извне электрического поля, выращивание растений в парниках в еще большей мере будет подчинено воле человека.

Значительные разности потенциалов в организме растений возбуждаться не могут, поскольку растения не имеют специализированного электрического органа. Поэтому среди растений не существует «древа смерти», которое могло бы убивать живые существа своей электрической мощностью.

Как растения реагируют на электричество

Как растения реагируют на электричествоНачнем с того, что индустрия сельского хозяйства разрушена до основания. Что дальше? Не пора ли собирать камни? Не пора ли объединить все творческие силы, чтобы дать селянам и дачникам те новинки, которые позволят резко поднять урожайность, сократить ручной труд, найти новые пути в генетике. Я бы предложил читателям журнала быть авторами рубрики «Для села и дачников». Начну с давней работы «Электрическое поле и урожайность.»

В 1954 г., когда я был слушателем Военной академии связи в Ленинграде, страстно увлекся процессом фотосинтеза и провел интересное испытание с выращиванием лука на подоконнике. Окна комнаты, в которой я жил, выходили на север, и потому солнца луковицы получать не могли. Я высадил в два удлиненных ящика по пять луковиц. Землю брал в одном и том же месте для обоих ящиков. Удобрений у меня не было, т.е. были созданы как бы одинаковые условия для выращивания. Над одним ящиком сверху, на расстоянии полуметра (рис.1) расположил металлическую пластину, к которой прикрепил провод от высоковольтного выпрямителя +10 000 В, а в землю этого ящика воткнул гвоздь, к которому подсоединил «-» провод от выпрямителя.

Сделал это для того, что по моей теории катализа создание в зоне растений высокого потенциала приведет к увеличению дипольного момента молекул, участвующих в реакции фотосинтеза, И потянулись дни испытаний. Уже через недели две я обнаружил, что в ящике с электрическим полем растения развиваются более эффективно, чем в ящике без «поля»! Спустя 15 лет этот эксперимент повторили в институте, когда потребовалось добиться выращивания растений в космическом корабле. Там, находясь в замкнутом от магнитного и электрического полей, растения развиваться не могли. Пришлось создавать искусственное электрическое поле, и теперь на космических кораблях растения выживают. А если вы живете в железобетонном доме, да еще на верхнем этаже, разве ваши растения в доме не страдают от отсутствия электрического (да и магнитного) поля? Суньте гвоздь в землю цветочного горшка, а проводок от него подсоедините к очищенной от краски или ржавчины отопительной батареи. В этом случае ваше растение приблизится к условиям жизни на открытом пространстве, что очень важно для растений да и для человека тоже!

Но на этом мои испытания не закончились. Проживая в г.Кировограде, я решил развести на подоконнике помидоры. Однако зима наступила столь быстро, что я не успел выкопать на огороде кусты помидор, чтобы пересадить их в цветочные горшки. Мне попался примерзший куст с небольшим живым отросточком. Я принес его домой, поставил в воду и. О, радость! Через 4 дня от нижней части отростка выросли белые корешки. Я пересадил его в горшок, и, когда он вырос с отростками, стал таким же методом получать новые саженцы. Всю зиму я лакомился свежими помидорами, выращенными на подоконнике. Но меня преследовал вопрос: неужели возможно в природе такое клонирование? Возможно, подтверждали мне старожилы в этом городе. Возможно, но.

Я переехал в Киев и попытался таким же образом получить саженцы помидор. У меня ничего не получилось. И я понял, что в Кировограде мне удавался этот метод потому, что там, в то время, когда я жил, в водопроводную сеть пускали воду из скважин, а не из Днепра, как в Киеве. Грунтовые воды в Кировограде имеют небольшую долю радиоактивности. Вот это и сыграло роль стимулятора роста корневой системы! Тогда я приложил к верхушке отростка помидора +1,5 В от батарейки, а «-» подвел к воде сосуда, где стоял отросток (рис.2), и через 4 дня на отростке, находящемся в воде, выросла густая «борода»! Так мне удалось клонировать отростки помидор.

Недавно мне надоело следить за поливом растений на подоконнике, я сунул в землю полоску фольгированного стеклотекстолита и большой гвоздь. К ним подсоединил провода от микроамперметра (рис.3). Сразу отклонилась стрелка, потому что земля в горшке была сырая, и сработала гальваническая пара «медь — железо». Через неделю увидел, как ток стал падать. Значит, наступала пора полива. Кроме того, растение выбросило новые листочки! Так растения реагируют на электричество.

«Электрическая жизнь» высших растений.

При рассмотрении процесса опыления растений «электрическими пчёлами» был, затронут вопрос об их электрическом взаимодействии. В этом контексте представляется интересным внимательнее посмотреть на характер электрических процессов в растениях. Присутствие электрических сигналов и связей в растении определяется наличием атомного строения вещества , ионным взаимодействием , движением жидкости по капиллярам и прочим . Электрическое поле вблизи растений обусловлено наличием двух физико-химических эффектов : «ландшафтного» и биоэлектрического . А именно, благодаря, механическому колебанию листьев в электрическом поле Земли и пространственному разделению зарядов, и возникновением при этом разности потенциалов на поверхности растений.

Электрическая сигнализация растений

Растениям свойственна элементарная чувствительность. Они pеагиpуют на внешние воздействия не смотря на то, что ведут неподвижный или малоподвижный образ жизни. В осуществлении чувствительности растений важную роль играет электрический тип сигнализации . По своим признакам (утрированно) он напоминает электрические процессы при распространении нервного импульса в нерве.

Электрические сигналы у растений возникают спустя короткое время после нанесения раздражения. Электрический импульс распространяется от места внешнего воздействия к корням, стеблям, листьям, усикам и пр. Раздражителями, вызывающими появление электрического сигнала могут быть разные явления: изменение температуры, механическое воздействие, облучение участка растения светом различного спектрального состава, и т.д. Клетки растений в ряде случаев способны отвечать генерацией электрических сигналов на чрезвычайно слабые воздействия и изменения в окружающей среде в естественной обстановке. Появление электрических сигналов вызывает, например, понижение температуры всего на 1-2°С. Соприкосновение щупальца росянки с отрезком волоса весом всего 0,000822 мг вызывает ответную биоэлектрическую реакцию и заметное движение щупальца. В любом случае появление электрического сигнала «на лицо».

Типы электрических сигналов в растениях

У растений выявлено три типа электрических сигналов ответных реакций: потенциалы действия, вариабельные потенциалы и микроритмы. Потенциалы действия представляют собой один из универсальных способов передачи информации о внешнем воздействии в живой природе. По ряду признаков и механизму возникновения потенциалы действия соответствуют процессам, происходящим в нервах животных. Отличие состоит в том, что в нервном волокне процессы деполяризации — реполяризации происходят значительно быстрее. Если у животного это занимает миллисекунды, то у растения секунды и десятки секунд. Вариабельные потенциалы возникают при воздействии сильных раздражителей (повреждение ткани). У вариабельных потенциалов не только природа происхождения отлична, но и при чётком прослеживании фазы деполяризации, фаза реполяризации является сильно растянутой. Природа микроритмов ещё не ясна. Микроритмы имеют слишком маленькую амплитуду в несколько микровольт и носят очень нерегулярный характер.

Распространение электрического сигнала в растении

Информация о внешнем раздражении посредством потенциалов действия распространяется по растению обычно со скоростью нескольких сантиметров в секунду или минуту. Проводниками потенциалов действия в них являются те же самые проводящие пучки или “жилки”, которые пронизывают все ткани и органы растения и служат для транспортировки по растению воды и питательных веществ. Однако каналы распространения электрических импульсов и передвижения веществ в проводящих пучках пространственно разделены. Электрические импульсы распространяются не по крупным сосудам, а по мелким клеткам флоэмы и протоксилемы. Потенциал действия создают как пучковые, так и внепучковые клетки, но проводить его могут только первые, так как у мелких пучковых клеток межклеточные связи выражены сильнее.

Механизм возникновения потенциала действия в растении подобен (но не аналогичен ) животному. В процессе генерации потенциалов действия в растении, так же как и в нерве, возникают ионные потоки. На воздействие внешнего раздражителя в растении открываются кальциевые каналы. Проводимость мембраны увеличивается, и ионы кальция входят внутрь, проводящих потенциал действия, клеток. Там они возбуждают хлорные каналы, те открываются и выпускают наружу поток ионов хлора. Вследствие того, что внешняя сторона мембраны заряжена положительно, а внутренняя – отрицательно, ионы хлора, имея отрицательный заряд, деполяризуют мембрану. Деполяризация мембраны в свою очередь способствует открыванию калиевых каналов и возникновению направленного наружу потока ионов калия. Этот поток будет оказывать на мембранный потенциал реполяризующее действие, что будет содействовать восстановлению исходного положения. Отличие от потенциала действия в нерве в том, что там, в качестве деполяризующих ионов выступают ионы натрия, а здесь ионы хлора. Такое однообразие свидетельствует о подобии механизмов происхождения потенциалов действия в живой природе. Механизм распространения потенциала действия у растений так же подобен животному. В результате деполяризации участка ткани в месте создания потенциала действия возникают местные круговые токи между деполяризованным возбуждённым участком ткани и соседними участками с нормальным уровнем мембранного потенциала клеток. Эти токи деполяризуют соседние области, что приводит к образованию в них потенциала действия и дальнейшему его распространению подобным образом.

У растений в отсутствии центральной нервной системы потенциал действия сам несет в себе возможность непосредственно влиять на функции органов и тканей, по которым он проходит. При прохождении электрического импульса по определённому участку ткани сильно меняется ионный состав, особенно содержание ионов калия и хлора. Так как уровень обменных процессов в ткани растения сильно зависит от ионного состава, то изменяя концентрацию тех или иных ионов, потенциалы действия в состоянии оказывать влияние на органы, по которым они распространяются. Правда, надо отметить, что в растениях потенциалы действия не имеют специфической информационной нагрузки, а являются сигналом на внешнее воздействие.

Слива под снегом

Интересно, как «высказалась» слива при таких внешних погодных обстоятельствах?

Однако, несмотря на не специфичность сигналов потенциалов действия, они вызывают изменение в тканях и органах ряда специфических процессов: усиление поглощения вещества корнями, изменение фотосинтеза листьев и пр. Сигнальная функция потенциалов действия сопутствует всем естественным процессам в жизни высших растений . Как указывалось выше, ими сопровождаются температурные изменения и механическое воздействие. В частности, при попадании пыльцы на рыльце пестика в нем возникают многочисленные электрические импульсы, распространяющиеся по направлению к завязи. Это влечёт цикл процессов, стимулирующих завязь к восприятию пыльцы и оплодотворению. Таким образом, с помощью электрических импульсов на слабые внешние воздействия растение имеет возможность лучшей ориентации в пространстве, а так же «предупреждает» свои органы и ткани о вероятных очень существенных изменениях во внешних условиях. Реакция органов и тканей растения посредством временного повышения устойчивости к неблагоприятным воздействиям является своеобразной предадаптацией, которая служит подготовкой к глубокой адаптации.

Растения под напряжением или сколько вольт нужно для картошки?

Растения под напряжением

Не правда ли, странное название — электрокультура? Что же это такое? Кратко говоря, наука, изучающая, как электрическое поле влияет на живые организмы. Теперь уже твердо установлено, что для них это поле имеет такое же значение, как, скажем, воздух, свет, тепло.

Электрокультура как наука, видимо, зародилась в 1776 году, когда французский аббат, позже академик, П. Берталон заметил, что растения близ громоотводов растут, развиваются куда лучше, чем на некотором отдалении от них. Он предположил: в этом виноваты электрические разряды, проходящие через громоотвод во время грозы.

Итальянец Ф. Гардини решил проверить догадку аббата. В 1793 году он натянул над фруктовыми деревьями в своем саду несколько рядов громоотводов (попросту проволоки) и принялся ожидать хорошего урожая. Три года над его садом бушевали грозы, однако урожай не только не повысился, а, наоборот, часть растений завяла.

Причину этого нашли только в 1836 году, когда знаменитый М. Фарадей доказал на себе, что если живой организм поместить в металлическую сетку (ее потом назвали клеткой Фарадея), то ему не надо бояться гроз. Ведь металлическая сетка не пропускает электричества, а силовые линии буквально обходят ее.

Только теперь стало ясно, что ряды проволочных громоотводов в саду Гардини создали над растениями некоторое подобие клетки Фарадея.

И чтобы окончательно убедиться в этом, французский ученый А. Грандо в 1848 году прикрыл одно растение такой клеткой, а второе оставил открытым. И что же? Первое отстало по развитию от второго.

Вывод напрашивался сам собой: электричество крайне необходимо для растений.

Но этот вывод еще надо было точно доказать. Такое доказательство провели лишь через 122 года после открытия Берталона. В 1898 году немецкий ученый С. Леместр и, спустя четыре года, его соотечественник О. Принсгейм прикрыли растение клеткой Фарадея, создав в ней искусственное электростатическое поле. И после целой серии опытов убедились, что оно вполне компенсирует нехватку природного электричества.
Больше того, если создать поле мощнее естественного, то рост растений даже ускоряется. Следовательно, электричество может существенно нам помочь в выращивании сельскохозяйственных культур.

ЭЛЕКТРИЧЕСКОЕ ПОЛЕ ПЛАНЕТЫ

Еще древним было прекрасно известно, что натертый о шерсть янтарь притягивает кусочки материи и бумаги. Сейчас-то мы знаем, что вокруг него создается электрическое поле. Но интересно, что точно так же ведут себя в электрическом поле и другие предметы растительного происхождения — например, стебельки и семена. Если их положить за заземленный электрод 2, а на верхний, параллельный ему электрод 1 подать положительный потенциал, они, как по команде, поднимутся и замрут вдоль силовых линий (рис. 1).

электрическое поле планеты
Рис. 2. Так эквипотенциальные поверхности огибают высокие здания и другие возвышенности..
колебания электрического поля земли
Рис. 3. Колебания напряженности электрического поля Земли (кривая 1) и активности Солнца (кривая 2) за двадцать лет. Буквой W обозначено число Вольфа, характеризующее интенсивность деятельности Солнца.
нарпяженность атмосферы
Рис. 4. Изменение напряженности электрического поля атмосферы над ровной местностью в течение суток, выраженное в процентах к среднему значению.
Взаимосвязь урожайности
Рис. 5. Взаимосвязь урожайности сельскохозяйственных культур в США (верхняя кривая) с колебаниями солнечной активности (нижняя кривая) за пятьдесят лет. По данным А. Чижевского.

А как только мы уберем заряд, так наши стебельки и семена хаотически рассыплются: как видите, электрическое поле смогло победить даже силу земного притяжения.
Очевидно, нечто подобное происходит и в природе, только на сей раз роль «подопытных кроликов» играют настоящие растения — в вертикальном положении их поддерживает электрическое поле Земли, и с его помощью они растут, устремляются вверх.

Но мы начинали с опыта, и поэтому логично возникает вопрос: что же считать «верхним электродом» нашей планеты? Ответ в 1902 году дали англичанин С. Хевйсайд и американец А. Кеннели. Они предположили, что в атмосфере на высоте примерно 100 км находится какой-то слой положительно заряженных частиц.

Потом, когда эта гипотеза подтвердилась, его назвали ионосферой. Теперь совершенно точно установлено, что между нею и отрицательно заряженной Землей, как между пластинами гигантского сферического конденсатора, существует электрическое поле. Оно характеризуется напряженностью, потенциалом относительно Земли и эквипотенциальностью.

Первые две величины изменяются с высотой: напряженность снижается (у поверхности она составляет 130 В/м, а на 6 км падает до 10 В/м), потенциал же, наоборот, возрастает (в 500 м от поверхности он равен 50 кВ, а вблизи ионосферы достигает 212 кВ).

Что же касается третьей величины. Планету как бы охватывают эквипотенциальные оболочки, причем напряженность каждой из них относительно Земли строго постоянна. Эти свойства электрического поля планеты уже используют в технике.
Например, американец М. Хилл из университета Д. Гопкинса запатентовал недавно оригинальный вариант автопилота.

На крыльях и хвосте самолета устанавливаются датчики. Пока машина летит на определенной высоте, словно скользя по эквипотенциальной поверхности, они бездействуют. Но как только самолет немного опустится или поднимется, тем самым перейдя в другой эквипотенциальный слой, датчики мгновенно среагируют на изменение потенциала и выдадут управляющий сигнал на рули.

Интересно, что такой автопилот может вести машину и на малой высоте. Ей ничуть не грозит столкновение с каким либо препятствием — ведь эквипотенциальные оболочки плавно огибают даже малейшие возвышенности (рис. 2).

Правда, настройку аппаратуры придется все время корректировать: электрическое поле Земли только называется статическим, а на самом деле его потенциал постоянно меняется. Уже замечены 11-летние циклы его колебаний, совпадающие с периодами солнечной активности (рис. 3); есть изменения годичные и даже суточные (рис. 4), причем во второй половине дня напряженность поля Земли гораздо выше, чем утром.

Итак, жизнь растений зависит от электрического поля атмосферы, а его состояние, в свою очередь, неразрывно связано с деятельностью Солнца. И не случайно урожаи, собранные в период наибольшей активности нашего светила, превышают на 54% средние сборы и на 108% недороды (рис. 5).

ПОТОКИ АЭРОИОНОВ

Как удалось установить, заряды от ионосферы к поверхности переносят аэроионы — положительно и отрицательно заряженные атомы и молекулы газов.
Отрицательные поднимаются вместе с капельками воды к положительно заряженной ионосфере, образуя по пути разнообразные облака: обычные (на высоте 10 км), перламутровые (25—30 км) и таинственные серебристые (80— 90 км).

Изменение количества аэроионов
Рис. 6. Изменение количества положительных и отрицательных аэроионов в 1 куб. см воздуха на протяжении года.
Зависимость всхожести семян
Рис. 7. Зависимость всхожести семян сахарной свеклы сорта Ялтушковская односеменная от часа обработки их электростатическим полем одной и той же напряженности.

А положительные опускаются к отрицательно заряженной поверхности, где их первыми встречают растения. В одном кубическом сантиметре воздуха у самой земли обычно насчитывается до 750 положительных и 650 отрицательных аэроионов, причем эта диспропорция возрастает именно к лету, во время царствования флоры (рис. 6).

Любопытно, что в помещении положительных аэроионов очень мало — воздух, проходя через форточку, оставляет снаружи почти половину их, а большая часть остальных оседает на стенах и разных предметах. Восполнить дефицит нетрудно — стоит внести в помещение сильно заряженный отрицательный электрод, как к нему тут же через все щели потянутся положительные аэроионы.

Объяснение этому явлению нашли только после того, как А. Беккерель и В. Рентген создали искусственные аэроионизаторы, а, С. Аррениус использовал теорию электролитической диссоциации при описании воздушной среды. Электроны, оказывается, не стекают с заряженного электрода, как считали раньше, — около него концентрируются аэроионы противоположного знака, которые и нейтрализуют частично первоначальный заряд.

Тогда-то стала ясна и роль громоотвода — заряжаясь от земли отрицательно, он притягивал из атмосферы положительные аэроионы, благотворно влияющие на растения. Так громоотвод стал первым устройством для электрокультуры, хотя создавался он с совсем другой целью.

ЭЛЕКТРОКУЛЬТУРА СЕМЯН

Если уж и активизировать растения электрическим полем, то это надо делать в самой начальной стадии их развития. К такому выводу пришел профессор А. Чижевский, изучив все, что было написано у нас и за рубежом об электрокультуре. И в 1932 году в подмосковном селе Кузьминки под его руководством начались исследования влияния электрического поля на семена овощей.

Их проводили на установке, похожей на ту, что изображена на рисунке 1, только на электрод 1 для привлечения положительных аэроионов к семенам подавался отрицательный потенциал. А второй электрод поместили под столом с подопытными семенами.

Для усиления эффекта верхний электрод сделали в виде игольчатой «люстры» с торчащими во все стороны маленькими громоотводами. Опыты прошли успешно, и Чижевский мог с полным правом утверждать: если на семена огурцов от 5 до 20 мин воздействовать электричеством, их всхожесть возрастет сразу на 14—16% (см. таблицу 1).

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: